Uniform Operators
نویسنده
چکیده
We present the definition and a normal form of a class of operators on sets of natural numbers which generalize the enumeration operators.
منابع مشابه
Uniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کاملSome Properties of Fuzzy Norm of Linear Operators
In the present paper, we study some properties of fuzzy norm of linear operators. At first the bounded inverse theorem on fuzzy normed linear spaces is investigated. Then, we prove Hahn Banach theorem, uniform boundedness theorem and closed graph theorem on fuzzy normed linear spaces. Finally the set of all compact operators on these spaces is studied.
متن کاملTHE UNIFORM BOUNDEDNESS PRINCIPLE IN FUZZIFYING TOPOLOGICAL LINEAR SPACES
The main purpose of this study is to discuss the uniform boundednessprinciple in fuzzifying topological linear spaces. At first theconcepts of uniformly boundedness principle and fuzzy equicontinuousfamily of linear operators are proposed, then the relations betweenfuzzy equicontinuous and uniformly bounded are studied, and with thehelp of net convergence, the characterization of fuzzyequiconti...
متن کاملOn the analytic properties of intertwining operators I: global normalizing factors
We provide a uniform estimate for the $L^1$-norm (over any interval of bounded length) of the logarithmic derivatives of global normalizing factors associated to intertwining operators for the following reductive groups over number fields: inner forms of $operatorname{GL}(n)$; quasi-split classical groups and their similitude groups; the exceptional group $G_2$. This estimate is a key in...
متن کاملBleimann, Butzer, and Hahn Operators Based on the q-Integers
We give a new generalization of Bleimann, Butzer, and Hahn operators, which includes qintegers.We investigate uniform approximation of these new operators on some subspace of bounded and continuous functions. In Section 3, we show that the rates of convergence of the new operators in uniform norm are better than the classical ones. We also obtain a pointwise estimation in a general Lipschitz-ty...
متن کاملStructured recursion for non-uniform data-types
Recursion is a simple but powerful programming technique used extensively in functional languages. For a number of reasons, however, it is often desirable to use structured forms of recursion in programming, encapsulated in so-called recursion operators, in preference to unrestricted recursion. In particular, using recursion operators has proved invaluable for transforming and reasoning about f...
متن کامل